Hydra
4.0.1
A header-only templated C++ framework to perform data analysis on massively parallel platforms.
|
#include <iostream>
#include <assert.h>
#include <time.h>
#include <chrono>
#include <random>
#include <algorithm>
#include <tclap/CmdLine.h>
#include <hydra/device/System.h>
#include <hydra/Function.h>
#include <hydra/Lambda.h>
#include <hydra/Random.h>
#include <hydra/LogLikelihoodFCN.h>
#include <hydra/Parameter.h>
#include <hydra/UserParameters.h>
#include <hydra/Pdf.h>
#include <hydra/AddPdf.h>
#include <hydra/DenseHistogram.h>
#include <hydra/functions/Gaussian.h>
#include <hydra/functions/Exponential.h>
#include <hydra/Placeholders.h>
#include "Minuit2/FunctionMinimum.h"
#include "Minuit2/MnUserParameterState.h"
#include "Minuit2/MnPrint.h"
#include "Minuit2/MnMigrad.h"
#include "Minuit2/MnMinimize.h"
Go to the source code of this file.
Macros | |
#define | DOUBLE_GAUSSIAN_PLUS_EXPONENTIAL_INL_ |
Functions | |
cmd | add (EArg) |
catch (TCLAP::ArgException &e) | |
declarg (_X, double) int main(int argv | |
TCLAP::ValueArg< size_t > | EArg ("n", "number-of-events","Number of events", true, 10e6, "size_t") |
Hist_Data | Fill (range.begin(), range.end()) |
std::cout<< "Minimum: "<< minimum_d<< std::endl;std::cout<< "-----------------------------------------"<< std::endl;std::cout<< "| [Fit] GPU Time (ms) ="<< elapsed_d.count()<< std::endl;std::cout<< "-----------------------------------------"<< std::endl;hydra::DenseHistogram< double, 1, hydra::device::sys_t > | Hist_Data (100, min, max) |
cmd | parse (argv, argc) |
model | SetExtended (1) |
Variables | |
char ** | argc |
auto | Background_PDF = hydra::make_pdf(hydra::Exponential<_X>(tau) , hydra::AnalyticalIntegral<hydra::Exponential<_X>>(min, max)) |
auto | Core_PDF = hydra::make_pdf( hydra::Gaussian<_X>(mean, sigma_core), hydra::AnalyticalIntegral<hydra::Gaussian<_X>>(min, max)) |
std::cout<< std::endl<< "Generated data:"<< std::endl;for(size_t i=0;i< 10;i++) std::cout<< "["<< i<< "] :"<< range[i]<< std::endl;auto fcn=hydra::make_loglikehood_fcn(model, range);ROOT::Minuit2::MnPrint::SetGlobalLevel(3);hydra::Print::SetLevel(hydra::WARNING);MnStrategy strategy(2);MnMigrad migrad_d(fcn, fcn.GetParameters().GetMnState(), strategy);std::cout<< fcn.GetParameters().GetMnState()<< std::endl;auto start_d=std::chrono::high_resolution_clock::now();FunctionMinimum minimum_d=FunctionMinimum(migrad_d(5000, 5));auto end_d=std::chrono::high_resolution_clock::now();std::chrono::duration< double, std::milli > | elapsed_d = end_d - start_d |
auto | fraction = hydra::Parameter("Core_Fraction" , 0.5, 0.001, 0.2 , 0.7) |
double | max = 10.0 |
auto | mean = hydra::Parameter::Create().Name("Mean").Value(0.0).Error(0.0001).Limits(-1.5, 1.5) |
double | min = -10.0 |
auto | model = hydra::add_pdfs( {N_Signal, N_Background}, Signal_PDF, Background_PDF) |
char const * | model_name = "Gaussian (core) + Gaussian (tail) + Exponential" |
hydra::Parameter | N_Background ("N_Background", 2000, 1, 100, nentries) |
hydra::Parameter | N_Signal ("N_Signal", 2000, 1, 100, nentries) |
nentries = EArg.getValue() | |
auto | range = hydra::sample(data, min, max, model.GetFunctor()) |
return | |
auto | sigma_core = hydra::Parameter::Create().Name("Sigma_Core").Value(0.5).Error(0.0001).Limits(0.1, 1.0) |
auto | sigma_tail = hydra::Parameter::Create().Name("Sigma_Tail").Value(1.5).Error(0.0001).Limits(1.0, 2.0) |
auto | Signal_PDF = hydra::add_pdfs( std::array<hydra::Parameter, 1>{fraction}, Core_PDF, Tail_PDF) |
auto | Tail_PDF = hydra::make_pdf( hydra::Gaussian<_X>(mean, sigma_tail), hydra::AnalyticalIntegral<hydra::Gaussian<_X>>(min, max)) |
auto | tau = hydra::Parameter::Create().Name("Tau").Value(-0.5).Error(0.0001).Limits(-1.0, 0.0) |
try | |
#define DOUBLE_GAUSSIAN_PLUS_EXPONENTIAL_INL_ |
cmd add | ( | EArg | ) |
catch | ( | TCLAP::ArgException & | e | ) |
declarg | ( | _X | , |
double | |||
) |
TCLAP::ValueArg<size_t> EArg | ( | "n" | , |
"number-of-events" | , | ||
"Number of events" | , | ||
true | , | ||
10e6 | , | ||
"size_t" | |||
) |
Hist_Data Fill | ( | range. | begin(), |
range. | end() | ||
) |
std::cout<< "Minimum: " << minimum_d << std::endl; std::cout << "-----------------------------------------"<<std::endl; std::cout << "| [Fit] GPU Time (ms) ="<< elapsed_d.count() <<std::endl; std::cout << "-----------------------------------------"<<std::endl; hydra::DenseHistogram<double, 1, hydra::device::sys_t> Hist_Data | ( | 100 | , |
min | , | ||
max | |||
) |
cmd parse | ( | argv | , |
argc | |||
) |
model SetExtended | ( | 1 | ) |
char** argc |
auto Background_PDF = hydra::make_pdf(hydra::Exponential<_X>(tau) , hydra::AnalyticalIntegral<hydra::Exponential<_X>>(min, max)) |
auto Core_PDF = hydra::make_pdf( hydra::Gaussian<_X>(mean, sigma_core), hydra::AnalyticalIntegral<hydra::Gaussian<_X>>(min, max)) |
std::cout<< std::endl<< "Generated data:"<< std::endl; for(size_t i=0; i< 10; i++) std::cout << "[" << i << "] :" << range[i] << std::endl; auto fcn = hydra::make_loglikehood_fcn( model, range ); ROOT::Minuit2::MnPrint::SetGlobalLevel(3); hydra::Print::SetLevel(hydra::WARNING); MnStrategy strategy(2); MnMigrad migrad_d(fcn, fcn.GetParameters().GetMnState() , strategy); std::cout<<fcn.GetParameters().GetMnState()<<std::endl; auto start_d = std::chrono::high_resolution_clock::now(); FunctionMinimum minimum_d = FunctionMinimum(migrad_d(5000, 5)); auto end_d = std::chrono::high_resolution_clock::now(); std::chrono::duration<double, std::milli> elapsed_d = end_d - start_d |
auto fraction = hydra::Parameter("Core_Fraction" , 0.5, 0.001, 0.2 , 0.7) |
double max = 10.0 |
auto mean = hydra::Parameter::Create().Name("Mean").Value(0.0).Error(0.0001).Limits(-1.5, 1.5) |
double min = -10.0 |
auto model = hydra::add_pdfs( {N_Signal, N_Background}, Signal_PDF, Background_PDF) |
char const* model_name = "Gaussian (core) + Gaussian (tail) + Exponential" |
hydra::Parameter N_Background("N_Background", 2000, 1, 100, nentries) |
hydra::Parameter N_Signal("N_Signal",2000, 1, 100, nentries) |
nentries = EArg.getValue() |
auto range = hydra::sample(data, min, max, model.GetFunctor()) |
return |
auto sigma_core = hydra::Parameter::Create().Name("Sigma_Core").Value(0.5).Error(0.0001).Limits(0.1, 1.0) |
auto sigma_tail = hydra::Parameter::Create().Name("Sigma_Tail").Value(1.5).Error(0.0001).Limits(1.0, 2.0) |
auto Signal_PDF = hydra::add_pdfs( std::array<hydra::Parameter, 1>{fraction}, Core_PDF, Tail_PDF) |
auto Tail_PDF = hydra::make_pdf( hydra::Gaussian<_X>(mean, sigma_tail), hydra::AnalyticalIntegral<hydra::Gaussian<_X>>(min, max)) |
auto tau = hydra::Parameter::Create().Name("Tau").Value(-0.5).Error(0.0001).Limits(-1.0, 0.0) |
try |